Year 4
 PROMPT sheet

4/1 Count in multiples

Now you must learn these multiples

Multiples of 6	Multiples of 7	Multiples of 9	Multiples of 25
6	7	9	25
12	14	18	50
18	21	27	75
24	28	36	100
30	35	45	125
36	42	54	150
42	49	63	175
48	56	72	200
54	63	81	225
60	70	90	250

4/2 Find 1000 more or less

To increase or decrease by 1000 this is the digit that changes.

4/2 Round to nearest 10, 100, 1000,

Example 1- Round 4279 to the nearest 1000

- Step 1 - Find the 'round-off digit' - 4
- Step 2-Look one digit to the right of 4-2

5 or more? NO - leave 'round off digit' unchanged

- Replace following digits with zeros

ANSWER - 4000

Example 2- Round 4279 to the nearest 10

- Step 1 - Find the 'round-off digit' - 7
- Step 2-Look one digit to the right of 7-9

5 or more? YES - Add one to the 'round off digit'

- Replace following digits with zeros

ANSWER - 4280

4/3 Negative numbers

Negative numbers are numbers BELOW ZERO

Think of a number line

- Horizontal number line

- Vertical number line

4/4 Place value

4/6 Add \& subtract

- Line up digits from right to left Example: Add 4735 and 386

4735
$+\quad 386$
5121

Example 2: Subtract 637 from 2476
$\&^{11} 4 \nabla^{61} 6$
$2^{14} 47^{1} 6$
$\begin{array}{r}637 \\ -\quad 639 \\ \hline\end{array}$
$\begin{array}{r}-163 \\ -18 \quad 3 \\ \hline 18 \\ \hline\end{array}$
1839

4/7 Estimate a calculation

- Round off each number so that the calculation is easy to do
Example 1: 644×11
To make it easy use:

$$
600 \times 11=6600 \text { or } 600 \times 10=6000
$$

Example 2: $\quad 503.926+709.328$
To make it easy use:

$$
500+700=1200
$$

Example 3: Half of 51.4328963
To make it easy use:

$$
\text { Half of } 50=25
$$

Example 3: 806-209
To make it easy use:

$$
800-200=600
$$

4/8 Addition \& subtraction problems

(Based upon 4/6)
Words associated with addition:

4/9 Multiplication tables

Remember:

$7 \times 8=56 \quad 8 \times 7=56 \quad 56 \div 7=8 \quad 56 \div 8=7$

4/10 Factor pairs

The number 12 can be made from these factor pairs

1×12	From these
2×6	factor pairs we
3×4	can see that
4×3	the factors of
6×2	12 are: $1,2,3$
12×1	$4,6,12$

4/11 Multiply by a single digit number

Example: 342×7

342	342	$300 \times 7=2100$
$\times \quad 7$	$\underline{\times 217}$	$40 \times 7=280$
$\frac{2394}{21}$	$\underline{2394}$	$\underline{2 \times 7}=\frac{14}{342 \times 7}=\underline{2394}$

4/12 Connections between 2 sums

- Look for connections between the 2 calculations

Example: We know $342 \times 7=2394$ (See above)

So we also know $342 \times 14=4788$

Example: We know $342 \times 7=2394$ (See above)

So we also know $684 \times 7=4788$
Example: We know $342 \times 7=2394$ (See above)

So we also know $342 \times 8=2394+(342 \times 1)$

$$
=2736
$$

4/13 Common equivalent fractions

- The same fraction can be expressed in different ways
ALL THESE ARE $\frac{1}{2}$

ALL THESE ARE $\frac{3}{4}$

$\frac{3}{4}=\frac{6}{8}=\frac{9}{12}=\frac{18}{24}$

4/14 Hundredths

- This represents 4 hundredths $=\frac{4}{100}$
- To find a hundredth of an object or quantity you divide by 100

4/14 Counting in hundredths (continued)

$0=6.63$
$P=6.66$
$Q=6.72$
$R=6.77$

4/15 Add \& subtract fractions

- To add and subtract fractions

When the denominators are the same

$\frac{5}{8}-\frac{1}{8}=\frac{4}{8}$

4/16 Decimal equivalents

4/16 Decimal equivalents

Others to learn are:

$$
\frac{1}{4}=0.25 \quad \frac{1}{2}=0.5 \quad \frac{3}{4}=0.75
$$

4/17 Effect of dividing by 10 and 100

- To divide by 10 , move each digit one place to the right
e.g. $35 \div 10=3.5$

- To divide by 100 , move each digit 2 places to the right
e.g. $35 \div 100=0.35$
(we add a zero to show there are no whole numbers)

Tens	Ones	\bullet	tenths	hundredths
3	5	\bullet		
	0	\bullet	$\rightarrow 3$	5

4/18 Round decimals to nearest whole

The Rules:

- If the digit behind the decimal point is LESS THAN 5, the number is rounded DOWN to the next whole number
Example: $\quad 6.4$ becomes rounded to 6
- If the digit behind the decimal point is 5 OR MORE, the number is rounded UP to the next whole number
Example: $\quad 6.5$ becomes rounded to 7 6.8 becomes rounded to 7

4/19 Convert between units of measure

- Time

- Length

- Mass or weight

- Capacity or volume

4/20 Perimeter \& area by counting

- Perimeter is round the OUTSIDE Perimeter of this shape $=12 \mathrm{~cm}$

- Area is the number of squares INSIDE Area of this shape $=5 \mathrm{~cm}^{2}$

			1			
		2	3	4		
			5			

4/21 Estimate measures

- Capacity

a 330 ml can of drink

an average bucket holds 10 litres

4/21 Estimate measures - continued

- Mass

this apple weighs 1259

this bag of sugar weighs 1 kg

- Length
this pencil is 17 cm long

length of classroom is 10 m

4/22 12- and 24-hour clock

AFTERNOON in 24-Hour Clock

1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
12:00pm (midday)	1:00pm	2:00pm	3:00pm	4:00pm	5:00pm	6:00pm	7:00pm	8:00pm	9:00pm	10:00pm	11:00pm
NOON in 12-Hour Clock											

4/23 - Properties of quadrilaterals \& triangles

TRIANGLES - angles add up to 180°
Isosceles triangle

- 2 equal sides
- 2 equal angles
- 1 line of symmetry
- No rotational symmetry

Equilateral triangle

- 3 equal sides
- 3 equal angles -60°
- 3 lines of symmetry
- Rotational symmetry order 3

QUADRILATERALS - all angles add up to 360°

Square

- 4 equal sides
- 4 equal angles -90°
- 4 lines of symmetry
- Rotational symmetry order 4

Rectangle

- Opposite sides equal
- 4 equal angles -90°
- 2 lines of symmetry
- Rotational symmetry order 2

Parallelogram

- Opposite sides parallel
- Opposite angles equal
- NO lines of symmetry
- Rotational symmetry order 2

Rhombus (like a diamond)

- Opposite sides parallel
- Opposite angles equal
- 2 lines of symmetry
- Rotational symmetry order 2

4/23 - Properties of quadrilaterals \&

 Triangles (continued)
Trapezium

- ONE pair opposite sides parallel

Kite

- One pair of opposite angles equal
- 2 pairs of adjacent sides equal
- ONE line of symmetry
- No rotational symmetry

4/24 Types of angles

Acute (less than 90°)

Right
(Exactly 90年)

Obtuse
(Between 90° \& 180°)

Straight line (180° or two right angles)

4/25 Identify lines of symmetry

- Horizontal line of symmetry

- Vertical line of symmetry

- Oblique line of symmetry

- Horizontal, Vertical \& Oblique lines of symmetry

4/26 Complete a symmetrical figure

- Tracing paper is brilliant for this

4/27 Describe position of points

- The horizontal axis is the x-axis
- The vertical axis is called the y-axis
- The origin is where the axes meet
- A point is described by two numbers The $1^{\text {st }}$ number is off the x-axis The $2^{\text {nd }}$ number is off the y-axis

4/27 Describe movement of shapes

Shape A has been moved 3 squares right and 2 down.
This movement is called TRANSLATION

4/28 Complete a 2D shape

Example: Draw on lines to complete parallelogram

4/29 Present discrete \& continuous data

Discrete data is counted
e.g. cars, students, animals

Graph to show favourite colours in Class 4

4/29 Present discrete \& continuous data

Continuous data is measured
e.g. heights, times, temperature

Graph to show a patient's temperature over 24h

4/30 Compare data in graphs

'Sum' or 'total' means 'add up'
'Difference' or 'how many more' means 'subtract'

Bar chart to show Number of Ice Creams sold in a week

(i) What is the total number of ice creams sold over the weekend? Answer: $37+30=67$
(ii) How many more were sold on Friday than Saturday?

Answer: 61-37 = 24

Pictogram to show the number of pizzas eaten by four friends in the past month:

Key:

Alan

Bob

Chris

Dave

(i) What is the sum of the number of pizzas eaten in the month

Answer: $6+9+19+12=46$
(ii) Find the difference in the number eaten by Chris and Bob
\qquad

Moorlands Junior School
July 2018

